New results for Constraint Markov Chains

نویسندگان

  • Benoît Delahaye
  • Kim G. Larsen
  • Axel Legay
  • Mikkel L. Pedersen
  • Andrzej Wasowski
چکیده

This paper studies compositional reasoning theories for stochastic systems. A specification theory combines notions of specification and implementation with satisfaction and refinement relations, and a set of operators that together support stepwise design. One of the first behavioral specification theories introduced for stochastic systems is the one of Interval Markov Chains (IMCs), which are Markov Chains whose probability distributions are replaced by a conjunction of intervals. In this paper, we show that IMCs are not closed under conjunction,which gives a formal proof of a conjecturemade in several recentworks. In order to leverage this problem, we suggested to work with Constraint Markov Chains (CMCs) that is another specification theory where intervals are replaced with general constraints. Contrary to IMCs, one can show that CMCs enjoy the closure properties of a specification theory. In addition, we propose aggressive abstraction procedures for CMCs. Such abstractions can be used either to combat the state-space explosion problem, or to simplify complex constraints. In particular, one can show that, under some assumptions, the behavior of any CMC can be abstracted by an IMC. Finally, we propose an algorithm for counter-example generation, in case a refinement of two CMCs does not hold. We present a tool that implements our results. Implementing CMCs is a complex process and relies on recent advances made in decision procedures for theory of reals. © 2011 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirical Bayes Estimation in Nonstationary Markov chains

Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical  Bayes estimators  for the transition probability  matrix of a finite nonstationary  Markov chain. The data are assumed to be of  a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...

متن کامل

Evaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes

Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded  DNA virus. There were two approaches for prediction of each Markov Model parameter,...

متن کامل

The Rate of Rényi Entropy for Irreducible Markov Chains

In this paper, we obtain the Rényi entropy rate for irreducible-aperiodic Markov chains with countable state space, using the theory of countable nonnegative matrices. We also obtain the bound for the rate of Rényi entropy of an irreducible Markov chain. Finally, we show that the bound for the Rényi entropy rate is the Shannon entropy rate.

متن کامل

A New Algorithm for Performance Evaluation of Homogeneous Architectural Styles

Software architecture is considered one of the most important indices of software engineering today. Software Architecture is a technical description of a system indicating its component structures and their relationships, and is the principles and rules governing designing. The success of the software depends on whether the system can satisfy the quality attributes. One of the most critical as...

متن کامل

A New Algorithm for Performance Evaluation of Homogeneous Architectural Styles

Software architecture is considered one of the most important indices of software engineering today. Software Architecture is a technical description of a system indicating its component structures and their relationships, and is the principles and rules governing designing. The success of the software depends on whether the system can satisfy the quality attributes. One of the most critical as...

متن کامل

Stochastic Dynamic Programming with Markov Chains for Optimal Sustainable Control of the Forest Sector with Continuous Cover Forestry

We present a stochastic dynamic programming approach with Markov chains for optimal control of the forest sector. The forest is managed via continuous cover forestry and the complete system is sustainable. Forest industry production, logistic solutions and harvest levels are optimized based on the sequentially revealed states of the markets. Adaptive full system optimization is necessary for co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Perform. Eval.

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2012